nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 01 No.234 14-27
屏幕内容图像质量客观评价方法综述
基金项目(Foundation): 北京市数字教育研究重点课题(No.BDEC2022619027); 北京市高等教育学会2023年立项面上课题(No.MS2023168); 北京印刷学院校级科研项目(No.Ec202303、Ea202301、E6202405);北京印刷学院学科建设和研究生教育专项(No.21090224002、21090323009、21090124013);北京印刷学院出版学新兴交叉学科平台建设项目(No.04190123001/003); 北京邮电大学网络与交换技术全国重点实验室开放课题资助项目(No.SKLNST-2023-1-12)
邮箱(Email):
DOI: 10.19370/j.cnki.cn10-1886/ts.2025.01.002
中文作者单位:

北京印刷学院高端印刷装备信号与信息处理北京市重点实验室;

摘要(Abstract):

在交互式多媒体中,屏幕内容图像客观质量评价有广泛的应用价值。本文首先阐述了屏幕内容图像和自然图像的区别;然后分析了基于手工提取特征和基于深度学习自动提取特征两种屏幕内容图像评价算法;接着总结了常用的评价指标和屏幕内容图像数据集,并对屏幕内容图像质量评价算法的性能进行比较;最后对屏幕内容图像质量评价算法的研究进行展望。本文有助于研究人员深入理解该领域的研究现状,为推动其技术的发展和应用提供指导和支持。

关键词(KeyWords): 屏幕内容图像;客观质量评价;深度学习;人眼视觉特性
参考文献

[1] NIZAMI I F, REHMAN M U, MAJID M, et al. Natural Scene Statistics Model Independent No-Reference Image Quality Assessment Using Patch Based Discrete Cosine Transform[J]. Multimedia Tools and Applications, 2020, 79(35-36):26285-26304.

[2] CHEN J, SHEN L, ZHENG L, et al. Naturalization Module in Neural Networks for Screen Content Image Quality Assessment[J]. IEEE Signal Processing Letters,2018, 25(11):1685-1689.

[3]朱映映,曹磊,王旭.无参考屏幕内容图像质量评价[J].软件学报, 2018, 29(4):973-986.ZHU Ying-Ying, CAO Lei, WANG Xu. No Reference Screen Content Image Quality Assessment[J]. Journal of Software, 2018, 29(4):973-986.

[4] AK A, PASTOR A, CALLET P L. From Just Noticeable Differences to Image Quality[C]//Proceedings of the 2nd Workshop on Quality of Experience in Visual Multimedia Applications. New York:Association for Computing Machinery, 2022:23-28.

[5] PONOMARENKO N, JIN L, IEREMEIEV O, et al. Image Database TID2013:Peculiarities, Results and Perspectives[J]. Signal Processing:Image Communication, 2015, 30:57-77.

[6] YANG H, FANG Y, LIN W. Perceptual Quality Assessment of Screen Content Images[J]. IEEE Transactions on Image Processing, 2015, 24(11):4408-4421.

[7] WANG M, ZHANG K, ZHANG L, et al. End-toEnd Image Compression with Swin-Transformer[C]//Proceedings of 2022 IEEE International Conference on Visual Communications and Image Processing. IEEE,2022:1-5.

[8] HE Q, YANG C, YANG F, et al. Unsupervised Blind Image Quality Assessment Based on Joint Structure and Natural Scene Statistics Features[J]. Journal of Visual Communication and Image Representation, 2022, 87:103579.

[9] KUNDU D, EVANS Brain L. Spatial Domain Synthetic Scene Statistics[C]//Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014:948-954.

[10] GU K, ZHOU J, QIAO J, et al. No-Reference Quality Assessment of Screen Content Pictures[J]. IEEE Transactions on Image Processing, 2017, 26(8):4005-4018.

[11]鄢杰斌,方玉明,刘学林.图像质量评价研究综述——从失真的角度[J].中国图象图形学报, 2022,27(5):1430-1466.YAN Jie-bin, FANG Yu-ming, LIU Xue-lin. The Review of Distortion-Related Image Quality Assessment[J]. Journal of Image and Graphics, 2022,27(5):1430-1466.

[12]曹玉东,刘海燕,贾旭,等.基于深度学习的图像质量评价方法综述[J].计算机工程与应用, 2021, 57(23):27-36.CAO Yu-dong, LIU Hai-yan, JIA Xu, et al. Overview of Image Quality Assessment Method Based on Deep Learning[J]. Computer Engineering and Applications,2021, 57(23):27-36.

[13] KANG L, YE P, LI Y, et al. Convolutional Neural Networks for No-Reference Image Quality Assessment[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:1733-1740.

[14] FANG Y, YAN J, LIU J, et al. Objective Quality Assessment of Screen Content Images by Uncertainty Weighting[J]. IEEE Transactions on Image Processing,2017, 26(4):2016-2027.

[15] WANG S, GU K, ZENG K, et al. Objective Quality Assessment and Perceptual Compression of Screen Content Images[J]. IEEE Computer Graphics and Applications, 2018, 38(1):47-58.

[16] ZHANG Y, CHANDLER D M, MOU X. Quality Assessment of Screen Content Images via Convolutional-Neural-Network-Based Synthetic/Natural Segmentation[J]. IEEE Transactions on Image Processing, 2018, 27(10):5113-5128.

[17] GU K, WANG S, YANG H, et al. Saliency-Guided Quality Assessment of Screen Content Images[J]. IEEE Transactions on Multimedia, 2016, 18(6):1098-1110.

[18] NI Z, ZENG H, MA L, et al. A Gabor Feature-Based Quality Assessment Model for the Screen Content Images[J]. IEEE Transactions on Image Processing,2018, 27(9):4516-4528.

[19] NI Z, MA L, ZENG H, et al. ESIM:Edge Similarity for Screen Content Image Quality Assessment[J]. IEEE Transactions on Image Processing, 2017, 26(10):4818-4831.

[20] NI Z, MA L, ZENG H, et al. Gradient Direction for Screen Content Image Quality Assessment[J]. IEEE Signal Processing Letters, 2016, 23(10):1394-1398.

[21] JIANG X, SHEN L, FENG G, et al. An Optimized CNN-Based Quality Assessment Model for Screen Content Image[J]. Signal Processing:Image Communication, 2021, 94:116181.

[22] CHEN C, ZHAO H, YANG H, et al. Full-Reference Screen Content Image Quality Assessment by Fusing Multilevel Structure Similarity[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17(3):1-21.

[23] SHAO F, GAO Y, LI F, et al. Toward a Blind Quality Predictor for Screen Content Images[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(9):1521-1530.

[24] YANG J, ZHAO Y, LIU J, et al. No Reference Quality Assessment for Screen Content Images Using Stacked Autoencoders in Pictorial and Textual Regions[J].IEEE Transactions on Cybernetics, 2022, 52(5):2798-2810.

[25] ZHENG L, SHEN L, CHEN J, et al. No-Reference Quality Assessment for Screen Content Images Based on Hybrid Region Features Fusion[J]. IEEE Transactions on Multimedia, 2019, 21(8):2057-2070.

[26] JIANG X, SHEN L, DING Q, et al. Screen Content Image Quality Assessment Based on Convolutional Neural Networks[J]. Journal of Visual Communication and Image Representation, 2020, 67:102745.

[27] ZUO L, WANG H, FU J. Screen Content Image Quality Assessment via Convolutional Neural Network[C]//Proceedings of 2016 IEEE International Conference on Image Processing. IEEE, 2016:2082-2086.

[28] ZHANG C, HUANG Z, LIU S, et al. Dual-Channel Multi-Task CNN for No-Reference Screen Content Image Quality Assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022,32(8):5011-5025.

[29] JIANG X, SHEN L, YU L, et al. No-Reference Screen Content Image Quality Assessment Based on MultiRegion Features[J]. Neurocomputing, 2020, 386:30-41.

[30] GAO R, HUANG Z, LIU S. Multi-task Deep Learning for No-Reference Screen Content Image Quality Assessment[C]//Proceedings of International Conference on MultiMedia Modeling. Springer, 2021:213-226.

[31] REHMAN M U, NIZAMI I F, MAJID M. DeepRPNBIQA:Deep Architectures with Region Proposal Network for Natural-Scene and Screen-Content Blind Image Quality Assessment[J]. Displays, 2022, 71:102101.

[32] RAHUL K, TIWARI A K. FQI:Feature-Based Reduced-Reference Image Quality Assessment Method for Screen Content Images[J]. IET Image Processing,2019, 13(7):1170-1180.

[33] MIN X, GU K, ZHAI G, et al. Saliency-Induced Reduced-Reference Quality Index for Natural Scene and Screen Content Images[J]. Signal Processing,2018, 145:127-136.

[34] HUANG Z, LIU S. Perceptual Hashing with Visual Content Understanding for Reduced-Reference Screen Content Image Quality Assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021,31(7):2808-2823.

[35] WANG S, GU K, ZHANG X, et al. Subjective and Objective Quality Assessment of Compressed Screen Content Images[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6(4):532-543.

[36] YANG H, WU S, DENG C, et al. Scale and Orientation Invariant Text Segmentation for Born-Digital Compound Images[J]. IEEE Transactions on Cybernetics, 2015, 45(3):519-533.

[37] MIN X, GU K, ZHAI G, et al. Screen Content Quality Assessment:Overview, Benchmark, and Beyond[J].ACM Computing Surveys, 2021, 54(9):1-36.

[38] CHE Z, ZHAI G, GU K, et al. Reduced-Reference Quality Metric for Screen Content Image[C]//Proceedings of 2017 IEEE International Conference on Image Processing, Beijing. IEEE, 2017:1852-1856.

[39]单月,万晓霞.基于纹理与结构失真的无参考图像质量评价模型[J].数字印刷, 2022,(4):163-173.SHAN Yue, WAN Xiao-xia. No-Reference Image Quality Assessment Model Based on Texture and Structure Distortion[J]. Digital Printing, 2022,(4):163-173.

[40] BOSSE S, MANIRY D, MULLER K, et al. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment[J]. IEEE Transactions on Image Processing, 2018, 27(1):206-219.

[41] MAHMOUDPOUR S, SCHELKENS P. Revisiting Natural Scene Statistical Modeling Using Deep Features for Opinion-Unaware Image Quality Assessment[C]//Proceedings of 2022 IEEE International Conference on Image Processing. IEEE, 2022:1471-1475.

[42] ZHENG J, CUI Z, GAN Z, et al. Three-Stream Network and Improved Attention Mechanism-Based Blind Image Quality Assessment[J]. Journal of Electronic Imaging,2023, 32(1):013026.

[43] YOU J, KORHONEN J. Transformer for Image Quality Assessment[C]//Proceedings of 2021 IEEE International Conference on Image Processing. IEEE,2021:1389-1393.

[44] ZHU M, HOU G, CHEN X, et al. Saliency-Guided Transformer Network Combined with Local Embedding for No-Reference Image Quality Assessment[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops. IEEE,2021:1953-1962.

[45] CHETOUANI A. Blind Utility and Quality Assessment Using a Convolutional Neural Network and a Patch Selection[C]//2019 IEEE International Conference on Image Processing. IEEE, 2019:459-463.

[46] LI R, YANG H, YU T, et al. CNN Model for Screen Content Image Quality Assessment Based on Region Difference[C]//Proceedings of 2019 IEEE4th International Conference on Signal and Image Processing. IEEE, 2019:1010-1014.

[47] LI T, MIN X, ZHAO H, et al. Subjective and Objective Quality Assessment of Compressed Screen Content Videos[J]. IEEE Transactions on Broadcasting, 2021,67(2):438-449.

[48] MIN X, MA K, GU K, et al. Unified Blind Quality Assessment of Compressed Natural, Graphic, and Screen Content Images[J]. IEEE Transactions on Image Processing, 2017, 26(11):5462-5474.

[49]艾达,白岩松,于可欣,等.全景图像质量评价方法最新进展[J].计算机工程与应用, 2022, 58(24):1-11.AI Da, BAI Yan-song, YU Ke-xin, et al. Recent Advances on Panoramic Image Quality Assessment Methods[J]. Computer Engineering and Applications,2022, 58(24):1-11.

[50] YANG S, WU T, SHI S, et al. MANIQA:Multidimension Attention Network for No-Reference Image Quality Assessment[C]//Proceedings of 2022IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2022:1190-1199.

基本信息:

DOI:10.19370/j.cnki.cn10-1886/ts.2025.01.002

中图分类号:TP391.41

引用信息:

[1]周子镱,董武,张艳等.屏幕内容图像质量客观评价方法综述[J].印刷与数字媒体技术研究,2025,No.234(01):14-27.DOI:10.19370/j.cnki.cn10-1886/ts.2025.01.002.

基金信息:

北京市数字教育研究重点课题(No.BDEC2022619027); 北京市高等教育学会2023年立项面上课题(No.MS2023168); 北京印刷学院校级科研项目(No.Ec202303、Ea202301、E6202405);北京印刷学院学科建设和研究生教育专项(No.21090224002、21090323009、21090124013);北京印刷学院出版学新兴交叉学科平台建设项目(No.04190123001/003); 北京邮电大学网络与交换技术全国重点实验室开放课题资助项目(No.SKLNST-2023-1-12)

检 索 高级检索