nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 05, No.226 1-16
机器人运动学与运动规划算法综述
基金项目(Foundation): 国家自然科学基金(No.52206096,No.52176076); 泰山学者工程项目(No.ts20190937)
邮箱(Email): ;;
DOI: 10.19370/j.cnki.cn10-1886/ts.2023.05.001
摘要:

机器人运动规划算法是机器人技术的核心之一,优异的规划算法不仅省时高效,而且精度高、运行平稳。本工作从轨迹规划和路径规划出发,全面综述了各种优化算法的优劣。在轨迹规划中,以关节空间轨迹规划和笛卡尔空间轨迹规划实现机器人的运动学求解,介绍其相关的求解方法;并以独特的思路参照是否智能及是否仿生对路径规划算法特点进行详细归纳,指明了优化算法的发展规律和趋势。同时对不同的路径规划算法在3D打印领域中的应用进行了举例,为机器人技术的广泛应用提供了重要的参考和借鉴意义。

Abstract:

Robot motion planning algorithm is one of the core of robotics technology. Excellent planning algorithm is not only time-saving and efficient, but also has high precision and stable operation. In this paper, starting from trajectory planning and path planning, the advantages and disadvantages of various optimization algorithms were comprehensively summarized. In trajectory planning, joint space planning and Cartesian space planning were used to solve the kinematics of the robot. The characteristics of the path planning algorithm were summarized in detail by referring to whether it was intelligent and whether it was bionic, and the development law and trend of the optimization algorithm were pointed out. At the same time, the application of different path planning algorithms in the field of 3D printing was illustrated, which provides important reference and reference significance for the wide application of robotics.

参考文献

[1]龙樟,李显涛,帅涛,等.工业机器人轨迹规划研究现状综述[J].机械科学与技术, 2021, 40(6):853-862.LONG Zhang, LI Xian-tao, SHUAI Tao, et al. Review of Research State of Trajectory Planning for Industrial Robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6):853-862.

[2] ALI M H, KURALBAY Y, AITMAGANBET A, et al.Design of a 6-DOF robot manipulator for 3D printed construction[J]. Materials Today:Proceedings, 2022,49:1462-1468.

[3]卢依婷,韩蔚瑶,黄宇刚. 3D打印光敏树脂材料的着色效果及固化性能研究[J].数字印刷, 2022,(2):102-109.LU Yi-ting, HAN Wei-yao, HUANG Yu-gang. Coloring Effect and Curing Performance of 3D Printing PhotoSensitive Resin[J]. Digital Printing, 2022,(2):102-109.

[4] WERNER J, ABURAIA M, RASCHENDORFER A,et al. MeshSlicer:A 3D-Printing Software for Printing3D-models with a 6-axis Industrial Robot[J]. Procedia CIRP, 2021, 99:110-115.

[5] GUAN J, SU Y, SU L, et al. Bio-inspired Algorithms for Industrial Robot Control using Deep Learning Methods[J]. Sustainable Energy Technologies and Assessments,2021, 47:101473. DOI:10.1016/j.seta.2021.101473.

[6] MADRIDANOá, AL-KAFF A, MARTíN D, et al.Trajectory Planning for Multi-robot Systems:Methods and Applications[J]. Expert Systems with Applications,2021, 173:114660. DOI:10.1016/j.eswa.2021.114660.

[7] MASEKO B B, VAN DAALEN C E, TREURNICHT J. Optimised Informed RRTs for Mobile Robot Path Planning[J]. IFAC-PapersOnLine, 2021, 54(21):157-162.

[8] CHaARI I, KOUBaA A, BENNACEUR H, et al. On the Adequacy of Tabu Search for Global Robot Path Planning Problem in Grid Environments[J]. Procedia Computer Science, 2014, 32:604-613.

[9] RAO A M, RAMJI K, KUMAR T N. Intelligent Navigation of Mobile Robot using Grey Wolf Colony Optimization[J]. Materials Today:Proceedings, 2018,5(9):19116-19125.

[10] WANG M, LUO J, YUAN J, et al. Coordinated Trajectory Planning of Dual-Arm Space Robot Using Constrained Particle Swarm Optimization[J]. Acta Astronautica, 2018, 146:259-272.

[11]郭庆鹏,张长青.工业机器人轨迹规划算法研究综述[J].木材加工机械, 2019, 30(6):8-13, 24.GUO Qing-peng, ZHANG Chang-qing. Review of Research on Industrial Robot Trajectory Planning Algorithms[J]. Wood Processing Machinery, 2019,30(6):8-13, 24.

[12] LIU X, QIU C, ZENG Q, et al. Kinematics Analysis and Trajectory Planning of Collaborative Welding Robot with Multiple Manipulators[J]. Procedia CIRP,2019, 81:1034-1039.

[13]李黎,尚俊云,冯艳丽,等.关节型工业机器人轨迹规划研究综述[J].计算机工程与应用, 2018, 54(5):36-50.LI Li, SHANG Jun-yun, FENG Yan-li, et al. Research of Trajectory Planning for Articulated Industrial Robot:A Review[J]. Computer Engineering and Applications, 2018, 54(5):36-50.

[14] JIN R, ROCCO P, GENG Y. Cartesian Trajectory Planning of Space Robots using a Multi-Objective Optimization[J]. Aerospace Science and Technology,2021, 108:106360. DOI:10.1016/j.ast.2020.106360.

[15] MOHAMED K, ELGAMAL H, ELSHARKAWY A.Dynamic Analysis with Optimum Trajectory Planning of Multiple Degree-Of-Freedom Surgical Micro-Robot[J]. Alexandria Engineering Journal, 2018, 57(4):4103-4112.

[16]尹海涛,叶春生.基于Bezier曲线生成3D打印分层路径[J].新技术新工艺, 2021,(2):32-35.YIN Hai-tao, YE Chun-sheng. Generating 3D Printing Layered Path Based on Bezier Curve[J]. New Technology and New Process, 2021,(2):32-35.

[17]岳晴晴.六轴工业机器人轨迹规划的研究[D].镇江:江苏科技大学, 2019.YUE Qing-qing. Study on Trajectory Planning of Sixaxis Industrial Robot[D]. Zhenjiang:Jiangsu University of Science and Technology, 2019.

[18]陈伟华.工业机器人笛卡尔空间轨迹规划的研究[D].广州:华南理工大学, 2010.CHEN Wei-hua. Study on Industrial Robot Trajectory Planning in Cartesian Space[D]. Guangzhou:South China University of Technology, 2010.

[19] LIU H, LAI X, WU W. Time-Optimal and JerkContinuous Trajectory Planning for Robot Manipulators with Kinematic Constraints[J]. Robotics and ComputerIntegrated Manufacturing, 2013, 29(2):309-317.

[20] ANDULKAR M V, CHIDDARWAR S S, MARATHE A S. Novel Integrated Offline Trajectory Generation Approach for Robot Assisted Spray Painting Operation[J]. Journal of Manufacturing Systems,2015, 37:201-216.

[21] WANG X, ZHOU X, XIA Z, et al. A Survey of Welding Robot Intelligent Path Optimization[J]. Journal of Manufacturing Processes, 2021, 63:14-23.

[22]黄晨华.工业机器人运动学逆解的几何求解方法[J].制造业自动化, 2014, 36(15):109-112.HUANG Chen-hua. A Geometric Approach for Solving a Industrial Robot Inverse Kinematics[J].Manufacturing Automation, 2014, 36(15):109-112.

[23]冷舒,吴克,居鹤华.机械臂运动学建模及解算方法综述[J].宇航学报, 2019, 40(11):1262-1273.LENG Shu, WU Ke, JU He-hua. Overview of Manipulator Kinematics Modeling and Solving Method[J]. Journal of Astronautics, 2019, 40(11):1262-1273.

[24]蒙运红,金逸,黄进.三平移并联机器人正解解析法的研究[J].舰船电子工程, 2015, 35(10):62-64.MENG Yun-hong, JIN Yi, HUANG Jin. Analytic Positive Solution Algorithm of 3-d.o.f Translational Parallel Robot[J]. Ship Electronic Engineering, 2015,35(10):62-64.

[25] KALAJAHI E G, MAHBOUBKHAH M, BARARI A. Numerical Versus Analytical Direct Kinematics in a Novel 4-DOF Parallel Robot Designed for Digital Metrology[J]. IFAC-PapersOnLine, 2021, 54(1):181-186.

[26] HENDRIKO H. Development of Invers Kinematic Method for 6-dof Parallel Robot using Analytical Approach[J]. Procedia Manufacturing, 2019, 38:203-208.

[27] KUCUK S, BINGUL Z. Inverse Kinematics Solutions for Industrial Robot Manipulators with Offset Wrists[J].Applied Mathematical Modelling, 2014, 38(7-8):1983-1999.

[28] YU M, LUO J, WANG M, et al. Spline-RRT*:Coordinated Motion Planning of Dual-Arm Space Robot[J]. IFAC-PapersOnLine, 2020, 53(2):9820-9825.

[29]郭梦诗,史腾飞.基于改进Dijkstra算法的机器人路径规划研究[J].电工技术, 2020,(20):22-23.GUO Meng-shi, SHI Teng-fei. Research on Robot Path Planning Based on Improved Dijkstra Algorithm[J].Electrotechnical Engineering, 2020,(20):22-23.

[30] ROSITA Y D, ROSYIDA E E, RUDIYANTO M A. Implementation of Dijkstra Algorithm and Multi-Criteria Decision-Making for Optimal Route Distribution[J]. Procedia Computer Science, 2019, 161:378-385.

[31]鲁毅,高永平,龙江腾. A*算法在移动机器人路径规划中的研究[J].湖北师范大学学报(自然科学版), 2022,(2):59-65.LU Yi, GAO Yong-ping, LONG Jiang-teng. A Study on A*Algorithm in Mobile Robot Path Planning[J].Journal of Hubei Normal University(Natural Science Edition), 2022,(2):59-65.

[32]张殿富,刘福.基于人工势场法的路径规划方法研究及展望[J].计算机工程与科学, 2013, 35(6):88-95.ZHANG Dian-fu, LIU Fu. Research and Development Trend of Path Planning Based on Artificial Potential Field Method[J]. Computer Engineering and Science,2013, 35(6):88-95.

[33] SUDHAKARA P,GANAPATHY V,PRIYADHARSHINI B, et al. Obstacle Avoidance and Navigation Planning of a Wheeled Mobile Robot Using Amended Artificial Potential Field Method[J]. Procedia Computer Science, 2018, 133:998-1004.

[34] LUMELSKY V, STEPANOV A. Dynamic Path Planning for a Mobile Automaton with Limited Information on the Environment[J]. IEEE Transactions on Automatic Control, 1986, 31(11):1058-1063.

[35] D E K K E R I, K E L L E N S K, D E M E E S T E R E.Optimisation of the Combined Application Planning and Execution Time Utilising Repeated PRM Replanning for Point-to-Point Sequences[J]. Procedia CIRP, 2021,103:286-291.

[36]邹善席,王品,韩旭.基于PRM改进的路径规划算法[J].组合机床与自动化加工技术, 2019,(1):1-3.ZOU Shan-xi, WANG Pin, HAN Xu. Improved Path Planning Algorithm Based on PRM[J]. Combined Machine Tool&Automatic Machining Technology,2019,(1):1-3.

[37]彭君,庞宗强,陆昂南.改进RRT算法在机器人路径规划中的应用[J].信息与电脑(理论版), 2021, 33(18):37-41.PENG Jun,PANG Zong-qiang,LU Ang-nan.Application of Improved RRT Algorithm in Robot Path Planning[J]. Information and Computer(Theoretical Edition), 2021, 33(18):37-41.

[38]王海芳,张瑶,朱亚锟,等.基于改进双向RRT*的移动机器人路径规划算法[J].东北大学学报(自然科学版), 2021, 42(8):1065-1070, 1142.WANG Hai-fang, ZHANG Yao, ZHU Ya-kun, et al. Mobile Robot Path Planning Algorithm Based on Improved RRT*FN[J]. Journal of Northeastern University(Natural Science), 2021, 42(8):1065-1070,1142.

[39] JIN Z, ZHANG Z, DEMIR K, et al. Machine Learning for Advanced Additive Manufacturing[J]. Matter, 2020,3(5):1541-1556.

[40] PERROT A, PIERRE A, NERELLA V, et al. From Analytical Methods to Numerical Simulations:A Process Engineering Toolbox for 3D Concrete Printing[J]. Cement and Concrete Composites, 2021, 122:104164. DOI:10.1016/j.cemconcomp.2021.104164.

[41] HU G, CAO Z, HOPKINS M, et al. Optimizing the Hardness of SLA Printed Objects by Using the Neural Network and Genetic Algorithm[J]. Procedia Manufacturing, 2019, 38:117-124.

[42] SARKAR R, BARMAN D, CHOWDHURY N. Domain Knowledge Based Genetic Algorithms for Mobile Robot Path Planning Having Single and Multiple Targets[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(7):4269-4283.

[43] ADAMIK M, GOGA J, PAVLOVICOVA J, et al. Fast Robotic Pencil Drawing Based on Image Evolution by Means of Genetic Algorithm[J]. Robotics and Autonomous Systems, 2022, 148:103912. https://doi.org/10.1016/j.robot.2021.103912.

[44] INDRAMAYA E, SUYANTO S. Comparative Study of Recent Swarm Algorithms for Continuous Optimization[J]. Procedia Computer Science, 2021, 179:685-695.

[45] TSUZUKI M D S G, DE CASTRO MARTINS T,TAKASE F K. Robot Path Planning Using Simulated Annealing[J]. IFAC Proceedings Volumes, 2006, 39(3):175-180.

[46] WANG H, ZHAO Q, LI H, et al. Polynomial-based Smooth Trajectory Planning for Fruit-Picking Robot Manipulator[J]. 2022, 9(1):112-122.

[47] ROUT A, DILEEP M, MOHANTA G B, et al. Optimal Time-Jerk Trajectory Planning of 6 Axis Welding Robot using TLBO Method[J]. Procedia Computer Science,2018, 133:537-544.

[48] BAO D Q, ZELINKA I. Obstacle Avoidance for Swarm Robot Based on Self-Organizing Migrating Algorithm[J]. Procedia Computer Science, 2019, 150:425-432.

[49] COSTANZI R, FANELLI F, MELI E, et al. Generic Path Planning Algorithm for Mobile Robots Based on Bézier Curves[J]. IFAC-PapersOnLine, 2016, 49(15):145-150.

[50] MOUAD M, ADOUANE L, KHADRAOUI D, et al.Mobile Robot Navigation and Obstacles Avoidance Based on Planning and Re-Planning Algorithm[J].IFAC Proceedings Volumes, 2012, 45(22):622-628.

[51] COUPEK D, FRIEDRICH J, BATTRAN D, et al.Reduction of Support Structures and Building Time by Optimized Path Planning Algorithms in Multi-Axis Additive Manufacturing[J]. Procedia Cirp, 2018, 67:221-226.

[52] LIFTON J, LIU T. An Adaptive Thresholding Algorithm for Porosity Measurement of Additively Manufactured Metal Test Samples via X-Ray Computed Tomography[J]. Additive Manufacturing, 2021, 39:101899. https://doi.org/10.1016/j.addma.2021.101899.

[53] ONSTEIN I F, EVJEMO L D, GRAVDAHL J T.Additive Manufacturing Path Generation for Robot Manipulators Based on CAD Models[J]. IFACPapersOnLine, 2020, 53(2):10037-10043.

[54] BUI H, PIERSON H A, NURRE S G, et al. Tool Path Planning Optimization for Multi-tool Additive Manufacturing[J]. Procedia Manufacturing, 2019, 39:457-464.

[55] LACHMAYER L, EKANAYAKA V, HüRKAMP A, et al. Approach to an Optimized Printing Path for Additive Manufacturing in Construction Utilizing FEM Modeling[J]. Procedia CIRP, 2021, 104:600-605.

[56] WANG J, CHEN W, XIAO X, et al. A Survey of the Development of Biomimetic Intelligence and Robotics[J]. Biomimetic Intelligence and Robotics, 2021, 1:100001. https://doi.org/10.1016/j.birob.2021.100001.

[57] EL HAIEK D, ABOULISSANE B, EL BAKKALI L, et al. Optimal Trajectory Planning for Spherical Robot Using Evolutionary Algorithms[J]. Procedia Manufacturing, 2019, 32:960-968.

[58] SEDDAOUI A, SAAJ C M. Collision-Free Optimal Trajectory Generation for a Space Robot Using Genetic Algorithm[J]. Acta Astronautica, 2021, 179:311-321.

[59] MURALI G B, DEEPAK B, BISWAL B, et al. Robotic Optimal Assembly Sequence Using Improved Cuckoo Search Algorithm[J]. Procedia Computer Science,2018, 133:323-330.

[60] DEWANG H S, MOHANTY P K, KUNDU S. A Robust Path Planning for Mobile Robot Using Smart Particle Swarm Optimization[J]. Procedia Computer Science,2018, 133:290-297.

[61] MALLIKARJUNA RAO A, RAMJI K, NAVEEN KUMAR T. Intelligent Navigation of Mobile Robot Using Grey Wolf Colony Optimization[J]. Materials Today:Proceedings, 2018, 5(9, Part 3):19116-19125.

[62] PATLE B, PANDEY A, JAGADEESH A, et al. Path Planning in Uncertain Environment by Using Firefly Algorithm[J]. Defence Technology, 2018, 14(6):691-701.

[63] NICOLA G, PEDROCCHI N, MUTTI S, et al. Optimal Task Positioning in Multi-Robot Cells, Using Nested Meta-Heuristic Swarm Algorithms[J]. Procedia CIRP,2018, 72:386-391.

[64] MU Y, QIAO J, LIU J, et al. Path Planning with Multiple Constraints and Path Following Based on Model Predictive Control for Robotic Fish[J]. Information Processing in Agriculture, 2022, 9(1):91-99.

[65]崔凤英,李晓微. 3D打印路径规划研究[J].青岛科技大学学报(自然科学版), 2020,(2):101-105.CUI Feng-ying, LI Xiao-wei. Research on 3D Printing Path Planning[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition),2020,(2):101-105.

[66] DEKA A, BEHDAD S. Part Separation Technique for Assembly-Based Design in Additive Manufacturing Using Genetic Algorithm[J]. Procedia Manufacturing,2019, 34:764-771.

[67]赵浩彬.基于改进遗传算法的3D打印多目标优化任务调度[D].天津:天津工业大学, 2021.ZHAO Hao-bin.3D Printing Multi-Objective Optimization Task Scheduling Based on Improved Genetic Algorithm[D]. Tianjin:Tianjin University of Technology, 2021.

[68] QI X, CHEN G, LI Y, et al. Applying Neural-NetworkBased Machine Learning to Additive Manufacturing:Current Applications, Challenges, and Future Perspectives[J]. Engineering, 2019, 5(4):721-729.

[69]刘莹,王晓宇,徐卓飞,等.基于卷积神经网络的商品图像识别[J].数字印刷, 2020,(6):33-40.LIU Ying, WANG Xiao-yu, XU Zhuo-fei, et al.Recognition of Commodities Images Based on the Convolutional Neural Network[J]. Digital Printing,2020,(6):33-40.

[70] VALIZADEH M, WOLFF S J. Convolutional Neural Network Applications in Additive Manufacturing:A Review[J]. Advances in Industrial and Manufacturing Engineering,2022,4:100072.DOI:10.1016/j.aime.2022.100072.

[71] YU Y, AN X, LIN J, et al. A Vision System Based on CNN-LSTM for Robotic Citrus Sorting[J]. Information Processing in Agriculture, 2022. https://doi.org/10.1016/j.inpa.2022.06.002.

[72] YING K-C, POURHEJAZY P, CHENG C-Y, et al. Deep Learning-Based Optimization for Motion Planning of Dual-Arm Assembly Robots[J]. Computers&Industrial Engineering, 2021, 160:107603. https://doi.org/10.1016/j.cie.2021.107603.

[73] WEST C, MONTAZERI A, MONK S D, et al.A Genetic Algorithm Approach for Parameter Optimization of a 7DOF Robotic Manipulator[J].IFAC-PapersOnLine, 2016, 49(12):1261-1266.

[74] GHARSALLI L, GUéRIN Y. Mechanical Sizing of a Composite Launcher Structure by Hybridizing a Genetic Algorithm with a Local Search Method[J].Composites Part C:Open Access, 2021, 5:100125.https://doi.org/10.1016/j.jcomc.2021.100125.

[75]李少波,宋启松,李志昂,等.遗传算法在机器人路径规划中的研究综述[J].科学技术与工程, 2020,(2):423-431.LI Shao-bo, SONG Qi-song, LI Zhi-ang, et al. Review of Genetic Algorithm in Robot Path Planning[J].Science Technology and Engineering, 2020,(2):423-431.

[76]张松灿,普杰信,司彦娜,等.蚁群算法在移动机器人路径规划中的应用综述[J].计算机工程与应用, 2020,56(8):10-19.ZHANG Song-can, PU Jie-xin, SI Yan-na, et al. Survey on Application of Ant Colony Algorithm in Path Planning of Mobile Robot[J]. Computer Engineering and Applications, 2020, 56(8):10-19.

[77] PRAKASAM A, SAVARIMUTHU N. Metaheuristic Algorithms and Polynomial Turing Reductions:A Case Study Based on Ant Colony Optimization[J]. Procedia Computer Science, 2015, 46:388-395.

[78]吕柏行,郭志光,赵韦皓,等.标准粒子群算法的优化方式综述[J].科学技术创新, 2021,(28):33-37.LV Bai-xing, GUO Zhi-guang, ZHAO Wei-hao, et al. A Review on Optimization Methods of Standard Particle Swarm Optimization[J]. Science and Technology Innovation, 2021,(28):33-37.

[79]冯茜,李擎,全威,等.多目标粒子群优化算法研究综述[J].工程科学学报, 2021, 43(6):745-753.FENG Qian, LI Qing, QUAN Wei, et al. Overview of Multiobjective Particle Swarm Optimization Algorithm[J]. Chinese Journal of Engineering Science, 2021,43(6):745-753.

[80]李素,袁志高,王聪,等.群智能算法优化支持向量机参数综述[J].智能系统学报, 2018, 13(1):70-84.L I S u, Y U A N Z h i-G a o, WA N G C o n g, e t a l.Optimization of Support Vector Machine Parameters Based on Group Intelligence Algorithm[J]. Journal of Intelligent Systems, 2018, 13(1):70-84.

[81] HU X, ZHANG H, LI Z, et al. A Novel Self-Adaptation Hybrid Artificial Fish-Swarm Algorithm[J]. IFAC Proceedings Volumes, 2013, 46(5):583-588.

[82]何尧,刘建华,杨荣华.人工蜂群算法研究综述[J].计算机应用研究, 2018, 35(5):1281-1286.HE Yao, LIU Jian-hua, YANG Rong-hua. Survey on Artificial Bee Colony Algorithm[J]. Application Research of Computers, 2018, 35(5):1281-1286.

[83] HANBAY K. A New Standard Error Based Artificial Bee Colony Algorithm and Its Applications in Feature Selection[J]. Journal of King Saud UniversityComputer and Information Sciences, 2022, 34(7):4554-4567.

[84] CZARNOWSKI I. Firefly Algorithm for Instance Selection[J]. Procedia Computer Science, 2021, 192:2269-2278.

[85]王沈娟,高晓智.萤火虫算法研究综述[J].微型机与应用, 2015, 34(8):8-11.WANG Shen-juan, GAO Xiao-zhi. A Survey of Research on Firefly Algorithm[J]. Microcomputers and Applications, 2015, 34(8):8-11.

[86] REFOUFI S, BENMAHAMMED K. Control of a Manipulator Robot by Neuro-Fuzzy Subsets Form Approach Control Optimized by the Genetic Algorithms[J]. ISA Transactions, 2018, 77:133-145.

[87]张晓凤,王秀英.灰狼优化算法研究综述[J].计算机科学, 2019, 46(3):30-38.ZHANG Xiao-feng, WANG Xiu-ying. Comprehensive Review of Grey Wolf Optimization Algorithm[J].Computer Science, 2019, 46(3):30-38.

[88] NADWEH S, KHADDAM O, HAYEK G, et al. Steady State Analysis of Modern Industrial Variable Speed Drive Systems Using Controllers Adjusted via Grey Wolf Algorithm&Particle Swarm Optimization[J].Heliyon, 2020, 6(11):e05438. https://doi.org/10.1016/j.heliyon.2020.e05438.

[89]姜爽,林丹.一种增加权重的蜘蛛猴优化算法[J].微电子学与计算机, 2018, 35(10):1-6.JIANG Shuang, LIN Dan. A Weighted Spider Swarm Intelligent Swarm Optimization Algorithm[J].Microelectronics&Computer, 2018, 35(10):1-6.

[90] DHAR J, ARORA S. Designing Fuzzy Rule Base Using Spider Monkey Optimization Algorithm in Cooperative Framework[J]. Future Computing and Informatics Journal, 2017, 2(1):31-38.

[91]汪雪莹,贺兴时.飞蛾扑火优化算法的研究及改进[J].河南科学, 2021,(7):1052-1061.WANG Xue-ying, HE Xing-shi. Research and Improvement of Moth-Flame Optimization Algorithm[J]. Henan Science, 2021,(7):1052-1061.

[92] MOHSENI S, BRENT A C, BURMESTER D, et al.Lévy-Flight Moth-Flame Optimisation AlgorithmBased Micro-grid Equipment Sizing:An Integrated Investment and Operational Planning Approach[J]. Energy and AI, 2021, 3:100047. https://doi.org/10.1016/j.egyai.2021.100047.

[93]冯礼杰,符强,陈嘉豪.改进多目标帝王蝶算法[J].计算机时代, 2021,(11):44-48.FENG Li-jie, FU Qiang, CHEN Jia-hao. Improved Multi-objective Monarch Butterfly Algorithm[J].Computer Age, 2021,(11):44-48.

[94] HADIDIAN-MOGHADDAM M J, ARABI-NOWDEH S, BIGDELI M, et al. A Multi-objective Optimal Sizing and Siting of Distributed Generation Using Ant Lion Optimization Technique[J]. Ain Shams Engineering Journal, 2018, 9(4):2101-2109.

[95]赵思达.蚁狮算法的改进研究及化工建模应用[D].杭州:浙江大学, 2020.ZHAO Si-da. Research on Improved Ant Lion Optimizer and Its Applications in Chemical Engineering Process Modeling[D]. Hangzhou:Zhejiang University, 2020.

[96]李家辉.基于群智能优化算法的特征选择方法研究[D].长春:吉林大学, 2021.LI Jia-hui. Research on Feature Selection:Swarm Intelligence Methods[D]. Changchun:Jilin University,2021.

[97] L I A N G S, S O N G B, X U E D. L a n d i n g R o u t e Planning Method for Micro Drones Based on Hybrid Optimization Algorithm[J]. Biomimetic Intelligence and Robotics, 2021, 1:100003. https://doi.org/10.1016/j.birob.2021.100003.

[98] WANG H, WU F, ZHANG L. Application of Variational Mode Decomposition Optimized with Improved Whale Optimization Algorithm in Bearing Failure Diagnosis[J]. Alexandria Engineering Journal, 2021, 60(5):4689-4699.

[99] MOSTAFA BOZORGI S, YAZDANI S. IWOA:An Improved Whale Optimization Algorithm for Optimization Problems[J]. Journal of Computational Design and Engineering, 2019, 6(3):243-259.

[100]刘景森,郑智远,李煜.一种交互演化改进鲸鱼算法及其收敛性分析[J].控制与决策, 2021,(1):75-83.LIU Jing-sen, ZHENG Zhi-yuan, LI Yu. An Interactive Evolutionary Improved Whale Algorithm and Its Convergence Analysis[J]. Control and Decision, 2021,(1):75-83.

[101]张孟健,汪敏,王霄,等.混合粒子群-蝴蝶算法的WSN节点部署研究[J].计算机工程与科学, 2022,44(6):1013-1022.ZHANG Meng-jian, WANG Min, WANG Xiao, et al.A Hybrid Particle Swarm-Butterfly Algorithm for WSN Node Deployment[J]. Computer Engineering and Science, 2022, 44(6):1013-1022.

[102] EHTERAM M, BANADKOOKI F B, FAI C M, et al. Optimal Operation of Multi-reservoir Systems for Increasing Power Generation Using a Seagull Optimization Algorithm and Heading Policy[J]. Energy Reports, 2021, 7:3703-3725.

[103]李沅航.海鸥优化算法与鲸鱼优化算法的寻优性能对比研究[J].现代信息科技, 2021, 5(3):67-71.LI Yuan-hang. Contrastive Study on Optimizing Performance of Seagull Optimization Algorithm and Whale Optimization Algorithm[J]. Modern Information Technology, 2021, 5(3):67-71.

[104] FENG J, LUO X, GAO M, et al. Minimization of Energy Consumption by Building Shape Optimization Using an Improved Manta-Ray Foraging Optimization Algorithm[J]. Energy Reports, 2021, 7:1068-1078.

[105]尚秋峰,杨根辈.基于改进的蝠鲼觅食算法的光纤布拉格光栅解调方法[J].光子学报, 2021, 50(9):0906001. DOI:10.3788/gzxb20215009.0906001.SHANG Qiu-feng, YANG Gen-bei. Fiber Bragg Grating Demodulation Method Based on Improved Manta Ray Foraging Optimization Algorithm[J]. Acta Photonica Sinica, 2021, 50(9):0906001. DOI:10.3788/gzxb20215009.0906001.

基本信息:

DOI:10.19370/j.cnki.cn10-1886/ts.2023.05.001

中图分类号:TP242

引用信息:

[1]卢凌霄,董乾鹏,张天乐等.机器人运动学与运动规划算法综述[J].印刷与数字媒体技术研究,2023,No.226(05):1-16.DOI:10.19370/j.cnki.cn10-1886/ts.2023.05.001.

基金信息:

国家自然科学基金(No.52206096,No.52176076); 泰山学者工程项目(No.ts20190937)

检 索 高级检索